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1. Introduction

In a recent paper [1], Amati, Veneziano and one of us have proposed a simplified approach

to the S-matrix for transplanckian scattering of light particles which could possibly describe

the region of classical gravitational collapse. This treatment originates from the eikonal

approach to high-energy string-gravity proposed in the eighties [2] and resums a class of

corrections to the leading eikonal operator which correspond to tree diagrams generated

by some effective high-energy graviton emission vertices.

The simplified action approach [1] is valid in a high energy regime (Gs ≫ ~) in which

the gravitational radius R ≡ 2G
√
s and the impact parameter b of the light scattering

particles are large with respect to the string length λs, so that string effects are normally

negligible. Thus, the dynamical variables are basically metric fields which, due to the

high-energy kinematics, are integrated over longitudinal space (x± ≡ x0 ± x3) and follow

a reduced dynamics in transverse space, which is two-dimensional for D = 4. The reduced

two-dimensional action corresponds to an approximate shock-wave solution [3] of the effec-

tive gravitational action [4 – 6], where however string effects (needed in order to regularize

it and to fully represent the eikonal approach of [2]) are neglected.
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By solving the classical nonlinear field equations of the reduced action, ACV [1] were

able to calculate the semiclassical S-matrix as function of R(s) and b, down to the strong-

coupling regime b . R(s), where classical gravitational collapse is expected to occur. In-

deed, a basic feature of the calculation is the existence of a critical value bc ∼ R such that,

for b < bc, the relevant solutions become complex-valued and the eikonal function shows a

power singularity with exponent 3/2, thus proving the occurrence of a new regime, possi-

bly related to classical black holes. Indirect evidence that this is the case comes from an

analysis of scattering in more general axisymmetric configurations [7] showing that when-

ever a sufficient condition for the existence of closed trapped surfaces is satisfied, the ACV

solutions become complex-valued too. Furthermore, the existence of the critical radius has

been confirmed numerically [8] by avoiding the azimuthal averaging approximation of the

ACV results, and by confirming the magnitude of the exponent.

If indeed b ≤ bc corresponds to the region of classical gravitational collapse, the quan-

tum counterpart of it should be related to the fact that, in this region, the field solutions

become complex-valued. By analogy with the well-known relation of classical to quantum

dynamics, this fact suggests that the S-matrix should be related to a quantum tunneling

process in a proper field space. The purpose of the present paper is to investigate this

possibility and to show that indeed a quantum counterpart of the semiclassical calculation

can be found, leading to the tunneling interpretation and to the calculation of a class of

quantum corrections.

The axisymmetric ACV equations are ordinary differential equations which describe

the evolution of some effective fields in the transverse space variable r2, which plays the

role of time. They involve a scalar field h(r2) ≡ 4 d(r2φ̇)/dr2 (ḟ ≡ df/dr2), which is

related to one graviton polarization – the other corresponding to soft graviton radiation —

and an auxiliary field ρ(r2) ≡ r2(1 − (2πR)2φ̇), in terms of which ACV set the boundary

conditions to their solutions. There are two of them: one is ρ̇(∞) = 1, corresponding to

a perturbative behaviour at large distances, while the other condition is ρ(0) = 0, which

— because of the peculiar definition of ρ — sets to zero a possible r2 = 0 singularity of φ̇.

ACV argue that the latter condition leads to a consistent treatment of the r = 0 boundary,

while a singularity of φ̇ would inficiate the interpretation of the metric coefficient hrr.

Given the fact that the semi-classical solutions are found with such boundary con-

ditions, the two-dimensional dynamics provides a hint to the tunneling phenomenon. In

fact, it provides a Coulomb-like interaction potential ∼ GsR2/ρ which acts as a barrier,

separating the weak field region with ρ > 0, 1 − ρ̇ ∼ h < 1 from the strong field one with

ρ ≤ 0, φ̇ > 1. For sufficiently small b < bc, it is impossible – by real-valued r2-evolution —

to cross such a barrier so as to reach ρ(0) = 0, thus avoiding a singular behaviour of the

φ̇ field at the trajectory endpoint. The S-matrix instead does it by quantum tunneling,

corresponding to the complex trajectories.

Here, in order to develop the idea just outlined we have to upgrade the classical level

to a quantum level, in which the variable r2 plays the role of time, and ρ and ρ̇ basically

satisfy canonical commutation relations. This sort of quantization is justified in section 2,

by using a path-integral interpretation of the reduced action approach, which is recast in

terms of the ρ field only. In section 3 we are able to relate the elastic S-matrix (possibly
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including absorption) to a tunneling amplitude, which is then expressed at quantum level

in terms of a particular choice of Coulomb wave-functions in ρ space. In section 4 we

explicitly calculate the ensuing S-matrix at quantum level (including absorption) and we

discuss its semiclassical limits, and the role of quantum corrections. In particular, we show

that elastic unitarity (|Sel| ≤ 1) is fulfilled and that the extra absorption of the collapse-

like regime for b < bc is continuously matched to normal absorption for b > bc. Finally, in

section 5, we summarize and discuss our main results.

2. The reduced-action approach at semiclassical level

The simplified ACV approach [1] to transplanckian scattering is based on two main points.

Firstly, the gravitational field associated to the high-energy scattering of light particles,

reduces to a shock-wave configuration of the form

h−−
∣

∣

x+=0
= (2πR)a(x)δ(x−) , h++

∣

∣

x−=0
= (2πR)ā(x)δ(x+) (2.1a)

hij = (πR)2Θ(x+x−)

(

δij −
∂i∂j

∇2

)

h(x) , (2.1b)

where a, ā are longitudinal profile functions, and h(x) ≡ ∇2φ is a scalar field describing

one emitted-graviton polarization (the other, related to soft graviton radiation, is negligible

in an axisymmetic configuration).

Secondly, the high-energy dynamics itself is summarized in the h-field emission-current

H(x) generated by the external sources coupled to the longitudinal fields a and ā. Such a

vertex has been calculated long ago [9, 10] and takes the form

−∇2H ≡ ∇2a∇2ā−∇i∇ja∇i∇j ā , (2.2)

which is the basis for the gravitational effective action [2] from which the shock-wave

solution [3] emerges. It is directly coupled to the field h and, indirectly, to the external

sources s and s̄ in the reduced 2-dimensional action

A
2πGs

=

∫

d2x

(

as̄+ ās− 1

2
∇a∇ā+

(πR)2

2

(

−(∇2φ)2 − 2∇φ · ∇H
)

)

(2.3)

which is the basic ingredient of the ACV simplified treatment.

The equations of motion (EOM) induced by (2.3) provide, with proper boundary con-

ditions, some well-defined effective metric fields. The “on-shell” action A(b, s), evaluated

on such fields, provides directly the elastic S-matrix

S = exp

(

i

~
A(b, s)

)

. (2.4)

Then, it can be shown [3, 1] that the reduced-action above (where R plays the role of cou-

pling constant) resums the so-called multi-H diagrams, contributing a series of corrections

∼ (R2/b2)n to the leading eikonal. Furthermore, the classical field solutions generate an
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effective metric by proper estension of (2.1) to the remaining components, as follows

ds2 = −dx+dx−
[

1 − (πR)2

2
Θ(x+x−)∇2φ

]

+ 2πR
[

a(z)δ(x−)(dx−)2 + ā(z)δ(x+)(dx+)2
]

− (πR)2

4
∇2φ

[

|x+|δ(x−)(dx−)2 + |x−|δ(x+)(dx+)2
]

+ ds2T (2.5)

ds2T = |dz|2 + (πR)2Θ(x+x−)
[

2|∂|2φ |dz|2 − ∂2φ (dz)2 − ∂∗2φ (dz∗)2
]

= |dz|2 + (πR)2Θ(x+x−)
(

δij∇2 −∇i∇j

)

φ dxidxj .

where we note that the metric perturbation induced by h has the form of a gravitational

wave with polarization

ǫµν
TT = (ǫµT ǫ

ν
T − ǫµLǫ

ν
L) , ǫµL ≡

(

k3

|k| ,0,
k0

|k|

)

, ǫµT ≡ (0, ǫ, 0) . (2.6)

The effective metric (2.5) is supposed to be useful in order to bridge the gap between

classical gravitation and the ACV approach. Furthermore, the S-matrix (2.4) can be

extended to inelastic processes on the basis of the same emitted-graviton field h(x).

In the case of axisymmetric solutions, where a = a(r2), ā = ā(r2), φ = φ(r2) it is

straightforward to see, by using eq. (2.2), that Ḣ(r2) = −2ȧ ˙̄a becomes proportional to

the a, ā kinetic term. Therefore, the action (2.3) can be rewritten in the more compact

one-dimensional form

A
2π2Gs

=

∫

dr2
(

a(r2)s̄(r2) + ā(r2)s(r2) − 2ρ ˙̄aȧ− 2

(2πR)2
(1 − ρ̇)2

)

, (2.7)

where we have introduced the auxiliary field ρ(r2)

ρ = r2
(

1 − (2πR)2φ̇
)

, h = 4 ˙(r2 ˙)φ =
1

(πR)2
(1 − ρ̇) (2.8)

which incorporates the φ-dependent interaction. The external sources s(r2), s̄(r2) are

assumed to be axisymmetric also, and are able to describe the particle-particle case by

setting πs(r2) = δ(r2), πs̄(r2) = δ(r2 − b2), where the azimuthal averaging procedure of

ACV is assumed.1

The equations of motion, specialized to the case of particles at impact parameter b

have the form

ȧ = − 1

2πρ
, ˙̄a = − 1

2πρ
Θ(r2 − b2) , (2.9)

ρ̈ =
1

2ρ2
Θ(r2 − b2) , ρ̇2 +

1

ρ
= 1 (r > b) (2.10)

and show the repulsive “Coulomb” potential in ρ-space (mentioned in the introduction),

which acts for r > b and will play an important role in the following. By replacing the

1The most direct interpretation of this configuration is the scattering of a particle off a ring-shaped null

matter distribution, which is approximately equivalent to the particle-particle case by azimuthal averag-

ing [1].
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EOM (2.9) into eq. (2.7), the reduced action can be expressed in terms of the ρ field only,

and takes the simple form

A
Gs

= −
∫

dr2
(

1

R2
(1 − ρ̇)2 − 1

ρ
Θ(r2 − b2)

)

, (2.11)

which is the one we shall consider at quantum level.

Let us now recall the main features of the classical ACV solutions of eq. (2.10). First, we

set the ACV boundary conditions ρ̇(∞) = 1 (matching with the perturbative behaviour),

and ρ(0) = 0, where the latter is required by a proper treatment [1] of the r2 = 0 boundary.2

Then, we find the Coulomb-like solution

ρ = R2 cosh2 χ(r2) , ρ̇ =

√

1 − R2

ρ
= tanhχ(r2) ≡ tr (r2 ≥ b2)

r2 = b2 +R2(χ+ sinhχ coshχ− χb − sinhχb coshχb) , (2.12)

to be joined with the behaviour ρ = ρ̇(b2)r2 for r2 ≤ b2. With the short-hand notation χb ≡
χ(b2), tb ≡ tanhχb, the continuity of ρ and ρ̇ at r2 = b2 requires the matching condition

ρ(b2) = b2 tanhχb = R2 cosh2 χb ,
R2

b2
= tb(1 − t2b) , (2.13)

which acquires the meaning of criticality equation.

Indeed, if the impact parameter b2 exceeds a critical value b2c = (3
√

3/2)R2 at which

eq. (2.13) is stationary, real valued solutions of type (2.12) with the above boundary con-

dition do exist, while for b < bc they become complex-valued. For b < bc, the class of

real-valued solutions of type (2.12) has ρ(0) = ρ(b2) − b2ρ̇(b2) > 0, and for a particular

initial value χ(0) = χm we reach the minimal ρm, determined by

b2

2R2
= cosh3 χm sinhχm =

tm
(1 − t2m)2

. (2.14)

Furthermore, the action (2.11) evaluated on the equation of motion becomes

A
Gs

= log(4L2) − log
1 + tb
1 − tb

+ 1 − b2

R2
(1 − t2b) , (tb ≡ tanhχb) (2.15)

and provides directly the b-dependent eikonal occurring in the elastic S-matrix.

The various branches of physical solutions for ρ(r2)/r2 = 1 − (2πR)2φ̇ are pictured in

figure 1. We see that, for b ≥ bc, there are two solutions with everywhere regular φ field,

one of them matching the iterative solution. On the other hand, for b < bc the regular

solutions become complex valued (figure 1b). They are compared in figure 1a with the

irregular real-valued ones which have ρ(0) = R2 cosh2(χm)(1− 2 sinh2 χm) > 0. Due to the

definition of ρ = r2[1 − (2πR)2φ̇], which has the kinematical factor r2, we see that such

2A nonvanishing ρ(0) would correspond to some outgoing flux of ∇φ and thus to a δ-function singularity

at the origin of h, which is not required by external sources.
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Figure 1: Semiclassical solutions ρ(τ)/τ showing: (a,b) supercritical branches (solid-blue) at

b2 = 1.2 b2
c
, (c) the critical one (dash-dotted green) and subcritical ones at b2 = 0.7 b2

c
. In the latter

case we contrast (m) the singular real-valued one (dashed-red on the left) with (r,i) the regular

complex-valued one (dashed, on the right). The black-dotted contour shows the border between

free and Coulomb-like evolution for b ≥ bc.

solutions show a singularity of the φ̇ field of type φ̇ ≃ −ρ(0)/r2 < 0, so that the metric

coefficient hrr must change sign at some value of r2 ∼ R2 and is singular at r = 0.

A clearcut interpretation of the (unphysical) real-valued solutions with b < bc and

ρ(0) > 0 is not really available yet. However, we know that in about the same impact

parameter region classical closed trapped surfaces do exist, as shown in [11, 12, 7]. It is

therefore tempting to guess that such field configurations of the ACV approach (which

are singular and should have negligible quantum weight) correspond to classically trapped

surfaces. In this picture, the complex-valued solutions with ρ(0) = 0 (which are regular,

and should have finite quantum weight) would correspond to the tunneling transition from

the perturbative fields with ρ̇(∞) = 1 and positive ρ to the “untrapped” configuration

with ρ(0) = 0.

In order to develop the above suggestion, in the following we shall consider the ac-

tion (2.11) at quantum level, by defining the S-matrix as the path-integral over ρ-field

configurations induced by that action.

3. The quantum level and tunneling amplitude

The idea is to introduce the quantum S-matrix as a path-integral in ρ-space of the reduced-

action exponential. In this “sum over actions” interpretation the semiclassical limit will

automatically agree with the expression in eq. (2.11) above, which is based on the “on-shell”

action. Furthermore, calculable quantum corrections will be introduced.

3.1 Quantized elastic S-matrix

Following the above suggestion, and neglecting absorptive effects induced by the h-field,

– 6 –
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we define

Sel(b, s) =

∫

ρ(0)=0
ρ̇(∞)=1

[Dρ(τ)] exp

{

− i

~

∫

dτ L(ρ, ρ̇, τ)

}

(3.1)

where we use the expression (2.11) of the reduced action, with the notation τ ≡ r2 and we

introduce the Lagrangian

L(ρ, ρ̇, τ) =
1

4G

[

(1 − ρ̇)2 − R2

ρ
Θ(τ − b2)

]

, (3.2)

with the boundary conditions ρ(0) = 0, ρ̇(∞) = 1 introduced by ACV and discussed in

section 2.

The definition (3.1) given above is equivalent, by a Legendre transform and use of

the Trotter formula [14], to quantize the τ -evolution Hamiltonian H(τ) to be introduced

shortly, and to calculate the evolution operator U(0,∞), thus reducing the S-matrix cal-

culation to a known quantum-mechanical problem. In fact, by eq. (3.2), we can introduce

the “conjugate momentum”

Π ≡ ∂L

∂ρ̇
=

1

2G
(ρ̇− 1) (3.3)

and we obtain

H(τ) ≡ Πρ̇− L =
1

4G

(

(ρ̇)2 − 1 +
R2

ρ
Θ(τ − b2)

)

, ρ̇ = 1 + 2GΠ (3.4)

from which the classical EOM (2.10) can be derived. Then, quantizing the evolution

according to eq. (3.1) amounts to assume the canonical commutation relation

[ρ,Π] = i~ , ρ̇ = −2i~G
∂

∂ρ
≡ − iR2

2α

∂

∂ρ
, α ≡ Gs

~
(3.5)

and to quantize the Hamiltonian (3.4) accordingly:

Ĥ

~
= −R

2

4α

∂2

∂ρ2
+ α

(

Θ(τ − b2)

ρ
− 1

R2

)

≡ H0

~
+
α

ρ
Θ(τ − b2) . (3.6)

Finally, the path-integral (3.1) for the S-matrix without absorption is related by Trotter’s

formula to a tunneling amplitude involving the time-evolution operator U(0,∞):

S(b, s) ∼ T (b, α) ≡ 〈ρ = 0|U(0,∞)|Π = 0〉 , H0|Π = 0〉 = 0 (3.7)

where U(τ,∞) is calculated with τ -antiordering and the normalization of states will be

fixed below.

We note that the commutation relation (3.5) does not follow from first principles,

but is simply induced by the path-integral definition (3.1). Note also that here we allow

fluctuations in transverse space, but we keep frozen the shock-wave dependence on the

longitudinal variables x±. This means that our account of quantum fluctuations is admit-

tedly incomplete and should be considered only as a first step towards the full quantum

level. This step, defined by (3.1)–(3.7), has nevertheless the virtue of reproducing the
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semiclassical result for α → ∞. Furthermore, we think that such commutation relations

are of the expected order of magnitude. An argument in this direction is to notice that the

shock-wave of ACV has wavefronts3 at x+x− = 0 and x+x− ≃ r2, and the latter implies

t ≃ −(|x3| + r2/α) at large negative times of order α. Therefore, time- and r2-derivatives

turn out to be related by a factor of 1/α as a consequence of a sort of retardation in the

occurrence of that “precursor” wavefront, a factor which also occurs in the commutation

relation (3.5). Finally, corrections of relative order (~/Gs)R2/b2 = λ2
P/b

2 are expected

here, and at full quantum level also.

3.2 Inelastic S-matrix and absorption

We have so far defined the S-matrix as if no inelastic processes were present. However,

the very existence of the emitted graviton field h implies the existence of multi-graviton

production and, by unitarity, of absorption in the elastic channel. Therefore, in order to

find a unitary S-matrix at quantum level, it is essential to introduce both phenomena. At

semiclassical level, ACV noticed that the classical h-field solution

hcl(τ) =
1

(πR)2
(

1 − ρ̇cl(τ)
)

(3.8)

induces in the eikonal formulation an inelastic S-matrix which is approximately described

by the coherent state operator

S = exp

(

i

~
A(b, s)

)

exp

(

2i
√
α

πR

∫ ∞

0
d2

x
(

1 − ρ̇cl(τ)
)

Ω(x)

)

(3.9)

Ω(x) ≡
∫

d2k dk3

2π
√
k0

[

a(k, k3)e
ik·x + h.c.

]

≡ A(x) +A†(x) ,

[A(x), A†(x′)] = Ybδ(x − x
′) (3.10)

where the operator Ω(x) incorporates both emission and absorption of the h-fields and Yb

parametrizes the (b-dependent) rapidity phase space which is effectively4 allowed by energy

conservation [13] . By normal ordering of (3.9), we derive the semiclassical elastic-channel

absorption factor

J ≡ |Sel(b, s)| = e−
2Ybα

π

R

dτ (1−ρ̇cl)
2

(3.11)

which is dependent, of course, on the classical solution singled out at semiclassical level.

A possible way to extend the coherent state definition (3.9) to the quantum level, is

just to introduce it in the path-integral formulation (3.1) as follows

S(b2, s; Ω) =

∫

ρ(0)=0
ρ̇(∞)=1

[Dρ(τ)] e−i
R

dτ L(ρ,ρ̇,τ) e
2i
√

α
πR

R

d2x [1−ρ̇(τ)]Ω(x) , (3.12)

3The second wavefront is better seen by replacing h(x) in eq. (2.1b) by
R

d2
k

(2π)2
h̃(k)eik·xJ0(|k|

√
x+x−),

as argued in [1].
4When energy conservation is taken into account [13], absorptive corrections consistent with the AGK

cutting rules [15] suppress the fragmentation region in a b-dependent way, so as to yield a purely central

process for b ∼ bc.
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where Ω(x) acts on the multi-graviton Fock space, but is to be considered as a c-number

current with respect to the quantum variables ρ, ρ̇.

In the elastic channel, the Ω-dependent exponential in (3.12) is to be replaced by its

vacuum expectation value exp[−2Ybα
π

∫

dτ (1 − ρ̇)2]. Of course, in this quantum extension

of (3.11), no commitment is made to a particular classical solution so that the output will

presumably contain a weighted superposition of the various classical paths satisfying the

boundary conditions, that we shall calculate in the following.

3.3 Tunneling amplitude neglecting absorption

With the above warnings about the meaning of quantization and the role of inelasticity, let

us derive a more detailed expression of the tunneling amplitude (3.7) without absorption

T (b, α) ≡ 〈ρ = 0|U(0,∞)|Π = 0〉 = 〈ρ = 0|ψ(τ = 0)〉 , H0|Π = 0〉 = 0 . (3.13)

where the initial (final) state expresses the boundary condition ρ̇(∞) = 1 (ρ(0) = 0),

ψ(τ) is the time-dependent wave function, and U(τ,∞) is the evolution operator in the

Schrödinger picture, calculated with τ -antiordering (according to the suggestion above that

true time is related to −r2/α).

Since the Hamiltonian (3.4) is time-dependent, the expression of the wave function at

time τ ≡ r2 is related to the evolution due to the Coulomb Hamiltonian Hc ≡ H0+Gs/ρ by

|ψ(τ)〉 = exp

(−iHcτ

~

)

Uc(0,∞)|Π = 0〉 (τ ≥ b2) (3.14)

= exp

(

iH0(b
2 − τ)

~

)

exp

(−iHcb
2

~

)

Uc(0,∞)|Π = 0〉 (τ < b2) . (3.15)

where, according to eq. (3.6), we have used “free” evolution for τ < b2. Therefore, the

tunneling amplitude can be related to a Coulomb wave function as follows

T (b, α) = 〈ρ = 0|ψ(0)〉 = 〈ρ = 0| exp

(

iH0b
2

~

)

exp

(−iHcb
2

~

)

Uc(0,∞)|Π = 0〉

=

∫

dρ

(πb2/iα)1/2
e−iα(ρ2/b2+b2)ψc(ρ) (3.16)

where we note the free Gaussian propagator, acting on the continuum Coulomb wave

function

ψc(ρ) ≡ 〈ρ|Uc(0,∞)|Π = 0〉 . (3.17)

The latter, due to the infinite evolution from the initial condition Π = 0 ⇐⇒ ρ̇ = 1, is a

solution of the stationary Coulomb problem

Hcψc(ρ) = ~

[

− 1

4α

d2

dρ2
+ α

(

1

ρ
− 1

)]

ψc(ρ) = 0 . (3.18)

with zero energy eigenvalue (where from now on we express ρ, r2, b2 in units of R2 = 4G2s).

The form of ψc(ρ) is better specified by the Lippman-Schwinger equation

ψc(ρ) = e2iαρ + αG0(0)
1

ρ
ψc(ρ) , G0(E) = [E −H0 + iǫ]−1 (3.19)
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and thus contains an incident wave with ρ̇ = 1, plus a reflected wave for ρ > 0 and a

transmitted wave in the ρ < 0 region.

We then conclude that the amplitude (3.7) is, by eq. (3.16), the convolution of a

gaussian propagator with the Coulomb wave function ψc(ρ), which has a tunneling inter-

pretation with the Coulomb barrier. In fact, by eq. (3.19), it contains a transmitted wave

in ρ < 0 (where the Coulomb potential is attractive) and incident plus reflected waves in

ρ > 0 (where it is repulsive).

Note that, at b = 0 we simply have T (0, α) = ψc(0), so that the tunneling interpretation

is direct. On the other hand for b > 0, the convolution with the free propagator changes

the problem considerably, and is the source of the critical impact parameter, as we shall

see below.

4. Calculation of quantum tunneling amplitude

We shall now proceed to the actual calculation of the tunneling amplitude (3.16) with-

out absorption in terms of the wave function (3.17). We shall then introduce absorption

according to the definition (3.12), by discussing in particular the S-matrix in the elastic

channel.

4.1 The tunneling wave function and b = 0 case

The explicit solution of (3.18) is given by a particular confluent hypergeometric function

of z ≡ −4iαρ defined as follows

ψc = Nc z e−z/2Φ(1 + iα, 2, z) , zΦ′′ + (2 − z)Φ′ − (1 + iα)Φ = 0

Φ ≃ z−(1+iα)
(

1 +O(1/z)
)

, (iz ∼ ρ→ −∞) (4.1)

where Φ is defined in terms of its asymptotic power behaviour for ρ → −∞ and the

normalization factor Nc, to be found below, is chosen so as to have, asymptotically, a

pure-phase incoming wave for ρ ≃ L2 ≫ 1, L2 being an IR parameter used to factorize

the Coulomb phase. We shall call this prescription as the “Coulomb phase” normalization

at b = ∞.

Here we note that the value c = 2 in Φ(1 + iα, c, z) yields a degenerate case for the

differential equation in (4.1) in which the standard solution with the ρ → −∞ outgoing

wave, usually called U(1 + iα, 2, z) [16], develops a z = 0 singularity of the form A/z +

B log z. Then, the continuation to ρ > 0 is determined by requiring the continuity of wave

function and its flux at ρ = 0, as is appropriate for a principal part determination of the

“Coulomb” singularity. The outcome involves therefore an important contribution at ρ > 0

of the regular solution F (1 + iα, 2, z), so that we obtain

ze−z/2Φ = ze−z/2

(

U(1 + iα, 2, z) +
iπΘ(iz)

Γ(iα)
F (1 + iα, 2, z)

)

(4.2)

≃ e(πα−z/2) cosh(πα)z−iα +
Γ(−iα)

Γ(iα)
e(πα+z/2) sinh(πα)(−z)iα (iz → +∞)
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We are finally able to determine the normalization factor Nc and the value of ψc(0), which

is finite and non-vanishing, as follows

T (0, α) = ψc(0) =
Nc

Γ(1 + iα)
= (4αL2)iα

exp(−πα/2)
Γ(1 + iα) cosh πα

(4.3)

a value which is of order e−πα, the same order as the wave transmitted by the barrier.

In the b = 0 case, the tunneling amplitude is simply the value ψc(0) in (4.3), with

the normalization just discussed, and is of order exp(−πα), as our S-matrix, leaving aside

the coherent state describing multigraviton production. We obtain, from ACV and from

eq. (4.3), a more detailed expression in terms of the known on-shell action (2.15), as follows

A(0, s) = α

(

log
4L2

R2
+ 1 + iπ

)

, (4.4)

T (0, α) = exp
{

iA(0, s)
}(

1 + O (1/α)
)

.

We see that the tunneling amplitude provides the semiclassical result for the elastic S-

matrix and quantum corrections to it. It also determines, in a way to be discussed shortly,

both normal graviton radiation and the corresponding absorption.

4.2 Integral representation of tunneling amplitude at b > 0

For b > 0, the calculation of T in (3.16) involves a nontrivial integral, which should be in-

vestigated with care. A preliminary analysis can be performed in the WKB approximation,

which is straightforward. In fact, by setting ρ = cosh2 χ, we have

ψc
WKB ∼ exp

(

i

~

∫ ρ

1
dρ′

√

1 − 1

ρ′

)

= e2iα(sinh χ cosh χ−χ) (4.5)

and the integral in (3.7) is dominated by a stationarity point at

√

1 − 1/ρ− ρ/b2 = 0 = R2/b2 − tb(1 − t2b) (criticality equation) (4.6)

yielding the phase

i

2~

(

2 sinhχb coshχb − 2χb −
cosh4 χb

b2
− b2

)

= iGs

(

− 2χb −
coshχb

sinhχb

)

(4.7)

which reproduce both the criticality equation and the on-shell action of ACV, apart from

an overall phase, which has not been determined in the expression (4.5).

The detailed calculation of T , yielding quantum corrections also, is done by using

standard Fourier-type representations for U and F [16] in eq. (4.2) and by performing the

gaussian ρ-integral in eq. (3.16). We then obtain the integral representation

T (b, α)

T (0, α)
= 2b2iα

[

−
∫ ∞

1
dt t

(

t− 1

t+ 1

)iα

eiαb2(t2−1) +

∫

C
dt

t

2

(

t− 1

t+ 1

)iα

eiαb2(t2−1)

]

(4.8)

where C is a contour encircling the branch points at t = ±1 in the anticlockwise direction.

In eq. (4.8), the b = 0 limit is accounted for by the first term, while the second takes over
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for finite b values, and is leading by a factor of sinh(πα) for b ≫ 1. The latter factor is

exhibited by rewriting the contour integral in terms of the discontinuity of the integrand

for −1 < t < 1.

More precisely, for sizeable values of b2, such that exp(αb2/3) ≫ 1, eq. (4.8) is domi-

nated by the second term which, by closing the contour on the branch-cut, takes the form

T (b, α) ≃ (iα/e)iα

Γ(iα)
tanh(πα) 2b2

∫ +1

−1
dt t eiαF(t,b2) , (eαb2/3 ≫ 1) (4.9)

F(t, b2) ≡ log(4L2) + 1 − log
1 + t

1 − t
− b2(1 − t2) (4.10)

where, as already noticed, the phase F is closely related to the original action (2.15) when

evaluated at the values t = tb satisfying the criticality condition.

It is interesting to note that the amplitude expression (4.8) resembles the “sum over

solutions” interpretation of the S-matrix in ACV, by setting t = tb ≡ tanhχb and by

choosing a proper measure factor. In fact, with this identification, the integrand carries

the same phase as eq. (4.7) given before. Keep in mind, however, that the full semiclassi-

cal expression of the ACV S-matrix carries also a coherent state factor yielding graviton

radiation and the corresponding absorption of the elastic amplitude, given in terms of the

field h(r2) = (1 − ρ̇(r2))/(πR)2, for each value of tb. We think, therefore, that the ex-

pression (4.8) — valid as it stands for the “elastic” part of the action (2.11) — should be

improved in order to extend it to inelastic processes and to take into account this effect.

4.3 Including absorption at quantum level

In order to take into account multi-graviton emission, the S-matrix should be defined as

in eq. (3.12). By limiting ourselves to the elastic channel, we should calculate the normal-

ordering suppression factor analogous to (3.11), and we obtain

Sel(b
2, s) = 〈0|S|0〉 = N

∫

ρ(0)=0
ρ̇(∞)=1

[Dρ(τ)] e−
i
~

R

dτ L(ρ,ρ̇,τ) e−αy
R

dτ (1−ρ̇(τ))2 , (4.11)

where the parameter y ≡ 2Yb/π effectively takes into account the longitudinal phase space,

limited by energy conservation [13].

The absorption term in (4.11) adds an imaginary part to the kinetic term in the

Lagrangian and formally changes the definition of the Hamiltonian and of the quantization

condition in terms of a parameter α̃ ≡ α(1 − iy)

H̃ = α̃
(

˙̂ρ 2 − 1
)

+
α

ρ̂
Θ(τ − b2) , [ρ̂, ˙̂ρ] =

i~

2α̃
, α̃ ≡ α(1 − iy) . (4.12)

A simple way to take into account such changes is to solve the evolution equation for the

wave-function 〈t|ψ̃(τ)〉 ≡ ψ(t; τ) directly in the momentum representation in which ˙̂ρ = t

is diagonal. We simply obtain

i
∂

∂τ
ψ(t; τ) =

[

α̃(t2 − 1) + αΘ(τ − b2)

(

i

2α̃

∂

∂t

)−1
]

ψ(t; τ) , (4.13)
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where we have introduced the representation

ρ̂ =
i

2α̃

∂

∂t
. (4.14)

For τ > b2, the evolution involves the Coulomb-type Hamiltonian with zero energy

(due to the boundary condition ρ̇(∞) = 1) and we get the solution

ψ(t; τ) =

(

1 − t

1 + t

)iα 1

1 − t2
N(α, y) , (τ > b2) , (4.15)

where the normalization factor N(α, y) will be fixed later on. On the other hand, for τ ≤ b2

we have just free evolution,

i
∂

∂τ
logψ(t; τ) = −α̃(1 − t2) , (4.16)

yielding

ψ(t; τ) = N(α, y)

(

1 − t

1 + t

)iα 1

1 − t2
eiα(1−iy)(1−t2)(τ−b2) , (τ ≤ b2) (4.17)

and therefore

ψ(ρ; τ) = N(α, y)

∫

dt

(

1 − t

1 + t

)iα 1

1 − t2
eiα(1−iy)(1−t2)(τ−b2)eiα(1−iy)ρt . (4.18)

Finally, by setting ρ = 0 and τ = 0 we get the desired result, which differs from the

representation (4.9) by an integration by parts, by a normalization factor and by the

replacement b2 → b2(1 − iy).

We thus conclude that the elastic S-matrix (or, the tunneling amplitude including

absorption) is given by

Sel(b, s, Yb) =
(iα/e)iα

Γ(iα)
tanh(πα) 2b2(1 − iy)N(α, y)

∫ +1

−1
dt t eiαF

(

t,b2(1−iy)
)

, (4.19)

where the factor N is now computed by the “Coulomb phase” normalization condition on

Sel(b = ∞) to be

N(α, y) = (1 − iy)iα . (4.20)

4.4 Perturbative versus collapse-like regimes

The elastic S-matrix resulting from eq. (4.19) improves the semiclassical approximation by

providing a quantum weight to the various classical paths. Its modulus is plotted in figure 2

for various values of α and of the absorption parameter y. Figure 2a shows that the y = 0

result oscillates, so that absorption (required for self-consistency because h ∼ 1− ρ̇ 6= 0) is

essential to comply with elastic unitarity (|Sel| ≤ 1).

The oscillations appearing in figure 2 in the y = 0 limit are due to the fact that

the quantum treatment embodies contributions from both the perturbative and the non-

perturbative semiclassical solutions for b > bc. In the saddle point approximation one

– 13 –
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Figure 2: a) Tunneling amplitude with elastic absorption, for two values of the absorption param-

eter y = 0 (dashed-red) and y = 0.5 (solid-blue), the latter to be compared with the semiclassical

result (dash-dotted green). b) Absorbed amplitudes for different values of α and y. (The two

solid-blue curves in a) and b) are the same amplitudes, just on different scales).

would have the simple formula

Sel(b, s) =
∑

j

Sj(s) =
∑

j

eiαF(tbj ,b2)

√

2tbj

3tb
2
j − 1

J (tbj , s)(1 + . . . ) (4.21)

J (tb, s) = e−
2Ybα

π

R

dτ (1−ρ̇cl)
2

= exp

[

−α2Yb

π

(

1

tb
− 1

)]

.

If the absorption factor J (tb, s) were neglected (as it happens in the y = 0 limit), there

would be strong interference of the two solutions, and large unitarity violations. For y = 0.5,

on the other hand, the non-perturbative contribution is much more absorbed, and the

result is dominated, for b > bc, by the perturbative contribution. This explains the overall

agreement with the semiclassical result — also plotted in figure 2a — with moderate

quantum corrections. Finally, in figure 2b we note the dependence of absorption on α and

y. While for b ≫ bc it is basically the product yα that matters, for b < bc absorption is

α dependent, but only weakly y-dependent, showing a sort of universal behaviour up to

sizeable values of y.

The S-matrix behaviour for b ∼ bc requires a special discussion. When tb in eq. (4.21)

approaches the critical value tc = 1/
√

3 (or, b2 ≃ b2c = 3
√

3/2) at which the criticality

equation is stationary, the two dominant contributions to (4.21) become of the same order,

and the saddle points pinch and then become complex conjugate (at y = 0). In such a

situation the quadratic fluctuations diverge, and the quadratic expansion of the phase (4.10)

has to be extended to the cubic terms, in order to stabilize the integration.

If absorption is included, this analysis has to be performed at complex values of b̃2 ≡
b2(1 − iy), by assuming that β̃ ≡ b̃2

b2c
− 1 ≡ β − iy is a small parameter (see app A). We

expand the phase in (4.9) around the value tm(b̃) such that F ′′(tm, b̃2) = 0, which is given
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precisely by eq. (2.14) and acquires the meaning of WKB turning point. To lowest order

in β̃ we find the expression

F(t, b̃2) = Fc −
√

3β̃ + 3β̃(t− tm) − 9

2
(t− tm)3 + · · · (4.22)

which, replaced in eq. (4.19), yields the integral representation of an Airy function (cf.

eq. (A.10)), by providing the approximate result

Sel ∼ α1/6e−α(i
√

3β̃−y)Ai(−21/3α2/3β̃) ∼ (−β̃)−1/4e
−α

“

i
√

3β̃−y+ 2
√

2
3

(−β̃)3/2
”

(4.23)

We see that the large-α behaviour is characterized by the (−β + iy)3/2 exponent for β > 0

also. However, the modulus |Sel| behaves differently for positive and negative β’s. Indeed,

a simple evaluation yields

|Sel| ≃ β−1/4e−αy(
√

3−1) e
√

2αy
√

β (β ≫ y)

≃ (−β)−1/4e−αy(
√

3−1) e−
2
√

2
3

α(−β)3/2
(−β ≫ y) (4.24)

Therefore, the additional absorption with exponent 3/2 for b < bc (β < 0) is unambigu-

ously confirmed, and is continuously joined to the y
√
β behaviour of normal absorption

for b > bc. This provides a rise of the modulus in the small β > 0 region, so as to match

eventually the (small) perturbative absorption at large values of b. Such features qualita-

tively explain the behaviour of absorption in the b ∼ bc region, as pictured in figure 2b, in

particular the fact that, for b < bc, it is weakly y-dependent.

The above analysis confirms the existence of a perturbative and a collapse-like regime,

and also confirms the singularity of exponent 3/2 for the asymptotic high-energy behaviour.

However, we also see from eq. (4.23) that b̃ = bc is not a real singularity of the S-matrix,

because the Airy function is an entire function of its argument ∼ β̃. This means that

the singularities due to the pinching solutions cancel each other at b = bc. The lack

of a true singularity might favour the interpretation of the new regime as a collective

phenomenon, rather than a signal of new states. However, since our quantization procedure

is incomplete, it is not yet clear whether such a feature is kept at full quantum level, in

the string-gravity framework.

5. Discussion

Here we have introduced a quantization procedure for the transverse-space dynamics of the

ACV framework [1], which allows a deeper understanding of the transplanckian scattering

matrix of light particles and of its high-energy regimes, by providing a quantum tunneling

interpretation of the collapse-like regime b . R = 4G
√
s.

Indeed, we have related the high-energy elastic S-matrix to a tunneling amplitude in

gravitational field space (h(r2) ≡ ∇2φ) from a weak-field configuration at large distances

(h(∞) = 0) to a regular field at short distances (h(0) finite). The dynamics, embodied in the

high-energy graviton emission vertex, provides an impact-parameter dependent Coulomb

barrier in the “renormalized radius” ρ ≡ r2(1− (2πR)2φ̇). As a consequence, if the impact
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parameter b is below some critical value bc ∼ R, quantum tunneling is essential for the

above configuration to occur and provides a calculable suppression of the elastic channel

which corresponds to the complex semiclassical solutions of the ACV proposal [1].

The statement above summarizes the basic point that we meant to elucidate here. Fur-

thermore, our quantum approach provides a deeper perspective on a number of other points.

• Introducing “normal” absorption (due to graviton emission) is essential for the S-

matrix to satisfy elastic unitarity, and in order to understand the relative weight of the

various semiclassical solutions and, in particular, the dominance of the perturbative

one for b≫ bc.

• Taking absorption into account amounts to consider a complex impact parameter

b̃2 ≡ b2(1 − iy), where y = 2Yb/π parametrizes the rapidity phase space allowed by

energy conservation [13] for graviton emission. This makes it possible to continue

normal absorption below b = bc, thus matching the perturbative behaviour at large

b values to the “extra” tunneling suppression for b < bc. The latter is thus fully

confirmed, and shows a sort of universality, in the sense that it is weakly y-dependent.

• Quantum corrections are calculable, of relative order 1/α and tend to smooth out

the semiclassical results. In particular, b = bc is a singularity of the asymptotic

high-energy behaviour, but is not a singularity of the S-matrix itself.

In the present paper we investigate the elastic S-matrix only. Although absorptive

effects are consistently taken into account and are essential to fulfill elastic unitarity, we do

not consider inelastic matrix elements explicitly. Our quantum model can be extended, in

principle, to inelastic channels according to eq. (3.12), by introducing some time-dependent

external current which, however, makes the inelastic model no longer explicitly solvable.

Furthermore, improvements are needed, for instance in connection with energy conserva-

tion [13]. For the above reasons a deeper analysis is desirable, and is deferred to further

work. Hopefully, the outcome of such a work should be able to explain the mechanism by

which inelastic unitarity can be satisfied.
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A. Stationary-phase estimates of tunneling amplitude

In this appendix we provide analytic approximations for the tunneling amplitude (4.9)

and the elastic scattering amplitude (4.19) when α is a large parameter. This amounts to

evaluate the t-integral

I(α, b2) ≡
∫ +1

−1
dt t eiαF(t,b2) (A.1)

in an approximate form, with F given by eq. (4.10).
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A.1 Quadratic expansion

Let us first look for stationary points tb of the phase F given in eq. (4.10):

F ′ ≡ ∂tF(t, b2) = 2

(

b2t− 1

1 − t2

)

= 0 ⇐⇒ tb(1 − tb
2) =

1

b2
(A.2)

The stationary points are thus determined by the criticality condition (4.6), and for b > bc
the integration interval t ∈ [−1, 1] contains two of the three real solutions:

tb1 = 1 − 1

2b2
+ O

(

1

b4

)

(perturbative solution) (A.3)

tb2 = 0 +
1

b2
+ O

(

1

b4

)

(non-perturbative solution) . (A.4)

The second derivative of the phase at the stationary points is given by

F ′′ ≡ ∂2
t F(t, b2) = 2

(

b2 − 2t

(1 − t2)2

)

, F ′′(tb, b
2) = −2b4tb(3tb

2 − 1) (A.5)

and increases with b: F ′′(tb1) ∼ b4, F ′′(tb2) ∼ b2. Therefore, the fluctuations around the

two saddle points are smaller and smaller at large b, while the distance between them

increases, allowing us to treat them separately for sufficiently large b:

I(α, b2) ≃
∫ 1

−1
dt t

2
∑

j=1

eiα[F(tbj)+
1
2
F ′′(tbj)(t−tbj)2] ≃

2
∑

j=1

tbje
iαF(tbj)

√

2πi

αF ′′(tbj)
(A.6)

≃ 1

b2

√

π

iα

2
∑

j=1

eiαF(tbj)

√

tbj

3tb
2
j − 1

. (A.7)

The saddle-point estimate of the tunneling amplitude is therefore given by

T (b, α) ≃ (iα/e)iα

Γ(iα)
tanh(πα) 2

√

π

iα

2
∑

j=1

eiαF(tbj)

√

tbj

3tb
2
j − 1

≃
2
∑

j=1

eiαF(tbj)

√

2tbj

3tb
2
j − 1

, (A.8)

where in the last equality we have used the Stirling approximation for Γ(iα) valid when α≫
1. The result (A.8) reproduces the elastic S-matrix result eq. (4.21) without absorption

(J = 1).

A.2 Cubic expansion

When the impact parameter b approaches the critical value bc, the two gaussians centered

at the saddle points overlap and cannot be considered separately. In particular, at b = bc
the two saddle points coincide

tb1(b
2
c) = tb2(b

2
c) = tc =

1√
3

(A.9)
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and have infinite fluctuations, due to the vanishing of the second derivative F ′′(tc, b2c) = 0.

Therefore, an estimate of the integral (A.1) for b ≃ bc requires an expansion of the phase

F up to the third order in t. In order to exploit the Airy-function integral representation

Ai(z) =

∫ e+iπ/3∞

e−iπ/3∞

dξ

2πi
e−zξ+ ξ3

3 , (A.10)

we expand F around the point tm(b2) where its second derivative vanishes:

F ′′(tm, b
2) = 0 ⇐⇒ tm

(1 − t2m)2
=
b2

2
, (A.11)

while the third derivatives is given by

F ′′′ ≡ ∂3
t F(t, b2) = −4

1 + 3t2

(1 − t2)3
. (A.12)

By denoting with the subscript m the various quantities evaluated at t = tm, and by setting

ξ ≡ i[α(−F ′′′
m)/2]1/3(t− tm) we obtain

I(α, b2) ≃
∫

dt t exp

{

iα

[

Fm + F ′
m(t− tm) +

1

6
F ′′′

m(t− tm)3
]}

≃ tmeiαFm2π

(

2

−F ′′′
mα

)1/3

Ai

(

α2/3F ′
m

( 2

−F ′′′
m

)1/3
)

. (A.13)

In order to express the above results in terms of the impact parameter b, it is convenient

to introduce the (small) parameter β such that

b2 = b2c(1 + β) . (A.14)

From eqs. (A.11), (4.10), (A.2), (A.12) we have

tm = tc

(

1 +
β

3
+ O

(

β2
)

)

, tb = tc

(

1 ±
√

2

3
β + O

(

β2
)

)

Fm = Fc −
√

3β + O
(

β2
)

, Fc ≡ F(tc, b
2
c) = log(4L2) − log(2 +

√
3) + 1 −

√
3

F ′
m = 3β +

β2

2
+ O

(

β3
)

F ′′′
m = −27

(

1 +
4β

3
+ O

(

β2
)

)

(A.15)

and finally

T (α, b2) ≃ 211/6 3−3/2
√

iπ α1/6 b2 eiαFc e−iα
√

3β Ai(−21/3α2/3β) . (A.16)

The behaviour of the elastic scattering amplitude (4.19)

Sel(b
2, s, Yb) = (1 − iy)iαT

(

b2(1 − iy), α
)

(A.17)

– 18 –



J
H
E
P
1
1
(
2
0
0
8
)
0
4
7

for b ≃ bc and small y can be obtained directly from eq. (A.16). In fact, if we denote

b̃2 ≡ b2(1 − iy) ≡ b2c(1 + β̃) , (A.18)

the complex parameter

β̃ = β − iy(1 + β) ≃ β − iy (A.19)

is small. The factor T
(

b2(1 − iy), α
)

is then given by the expression (A.16) with β → β̃.

The remaining factor can be rewritten as

N(α, y) = (1 − iy)iα ≃ (e−iy)iα = eαy (y ≪ 1) (A.20)

and we obtain

Sel(b
2, s, Yb) ≃ 211/6 3−3/2

√
iπ α1/6 b̃2 eiαFc e−α(i

√
3β̃−y) Ai(−21/3α2/3β̃) , (A.21)

from which we derive eq. (4.23). The r.h.s. of eq. (4.23) is obtained from the asymptotic

behaviour

Ai(z) ≃ 1

2
√
πz1/4

exp

(

−2

3
z3/2

)

(z → ∞ , | arg(z)| < π) , (A.22)

where we can consider the argument of Ai to be large even for small β̃, provided α is large

enough:

|z| = 21/3α2/3 |β̃| ≫ 1 . (A.23)
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